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Abstract: By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal
compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are
intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle
being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and
transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth
and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic
plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from
ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly
via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe
the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate
upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other
organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER
Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
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1. Overview

For well over a century, perhaps starting with the remarkable drawings of Ramón y Cajal [1],
neurons have been appreciated for their exquisite structural intricacy. Mirroring the complexity of
neuronal morphology, architecture of their organelles varies significantly from one subcellular location
to the next. For instance, the endoplasmic reticulum (ER), whose surface area vastly exceeds that of
the plasma membrane [2], is comprised of tightly-packed interconnected sheets in cell bodies and
dendrites, whereas the same organelle in axons takes on a characteristically tubular shape [3–7]. Recent
studies have suggested that the morphological features of the ER are not ‘accidental’ consequences
of neuronal arborization. Rather, the observed structural heterogeneity is inherent to the functional
diversity and pleiotropy of these organelles in different neuronal compartments. In the following
sections, we describe our current understanding of the mechanisms involved in the regulation of ER
Ca2+ homeostasis through the lens of neuronal architecture and elaborate upon how changes in ER
Ca2+ dynamics across space and time sculpt various aspects of neuronal function.

2. Neuronal Polarity Imposes Structural Constraints on the ER

Most neurons exhibit stereotypical compartmentalization that arises from partitioning into
functional modules called dendrites, cell bodies, and axons. Whereas cell bodies house the nucleus
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and serve as de facto guides of overall cellular function, dendrites and axons are responsible for
the transmission of electrical and chemical signals across neuronal networks. Dendrites, the signal
receiving compartments, are comprised of tiny protrusions called spines, each of which contains
a specialized ER structure called the spine apparatus [5,6]. The spine apparatus has roles in the
regulation of spine morphogenesis, Ca2+ dynamics, and synaptic plasticity [5,8,9]. Structurally, the
spine apparatus is made up of interconnected stacks of ER, and typically occupies <5% of the spine
volume [10]. Despite the relatively small fraction of the total spine volume, the complexity of ER
structure, in terms of branching and local arborization, increases dramatically as the ER traverses
into spines from the ‘bulk’ dendrite [11]. This increase in structural complexity serves to limit the
movement of proteins embedded in the ER, thus facilitating the translocation of proteins from the spine
apparatus to local plasma membrane [11,12]. These findings underscore the validity of the notion that
the structural heterogeneity of the ER is not simply a passive outcome of neuronal arborization, but
rather represents an example of ‘function arising from form’.

The morphology of ER in neuronal cell bodies is similar to that observed in spines, and resembles
stacked sheets connected by helicoidal structures interspersed between the sheets [4]. ER sheets
in neuronal soma and dendrites exhibit continuity and dynamic exchange of membranes, which is
necessary for dendrites to reliably maintain Ca2+ homeostasis for extended durations [13,14]. The
stacked-sheet architecture also permits an exceptionally high density of ER membrane in cell bodies,
which provides an expansive surface for ribosome attachment [4]. Attachment of ribosomes to ER
sheets is necessary for protein translation, and morphologically distinguishes rough ER (RER) from
smooth ER (SER). Somatodendritic compartments contain both SER and RER, which exhibit dynamic
transitions between each other [15].

In contrast to the sheet-like structures in cell bodies and dendrites, axonal ER is comprised of
thin (~20–30 nm in diameter), elongated, and smooth tubules [3,16]. RER constitutes a very small
fraction of axonal ER [17]. The relative paucity of RER in axons suggests a diminished contribution of
ER-associated ribosomes in axonal protein translation. ER tubules are sculpted from sheets by the
complex interplay between many proteins including atlastin, the reticulon complex, and members
of the receptor expression enhancing proteins (REEPs) [7,18–21]. Once tubulated, growth of nascent
ER along microtubules allows the organelle to populate the entire length of the axon [22]. The axonal
ER and microtubules exhibit multiple levels of crosstalk, and function together to mediate axonal
elongation and neuronal polarity [20,22,23]. In addition to microtubules, neurofilaments and atypical
myosins (e.g., myosin Va) also regulate the shape and distribution of axonal ER, which in return guides
axonal growth [24,25].

3. ER-Resident Ca2+ Channels Are Required for the Regulation of Axodendritic Growth
and Morphology

As mentioned at the end of the previous section, the relationship between the structures of
neurons and the underlying ER is inherently bidirectional. While neuronal architecture imposes
specific constraints on ER morphology, ER Ca2+ release and the channels involved therein influence
the structure of neurons. Analyses of invertebrate synapses have revealed several aspects of the
interplay between Ca2+ and neuronal structure and function. Since the sites of neurotransmitter release
are located within clearly identifiable presynaptic boutons at Drosophila neuromuscular junctions
(NMJ) [26–28], determinants of bouton morphology and number at these synapses have been matters of
intense study. The stereotypical arborization of axon termini at Drosophila NMJs is strongly influenced
by the stability of presynaptic microtubules, which depends on the microtubule binding protein 1b
(MAP1b) homolog, Futsch (Figure 1) [29–31]. Futsch–microtubule association promotes microtubule
stability, whereas diminished interaction with Futsch results in microtubule depolymerization and
stereotypical alterations in NMJ morphology—larger but fewer boutons [23,29–31]. As is the case for
many microtubule binding proteins, Futsch–microtubule association is inversely correlated with Futsch
phosphorylation [32]. Ca2+ release via the ER-resident transient receptor potential vanilloid (TRPV)
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channel, Inactive (Iav) [33,34], leads to activation of the Ca2+-dependent phosphatase, calcineurin
(Figure 1) [23]. Once activated, calcineurin mediates Futsch dephosphorylation, increased microtubule
stability, and normal bouton morphology [23]. Decreased abundance of Iav and Drosophila homologs
of the ER channels, inositol triphosphate receptors (IP3Rs), and ryanodine receptors (RyRs), results in
diminished calcineurin activity, loss of presynaptic microtubules, and attendant alterations in bouton
number and morphology [23]. The observation that activities of Iav, IP3R, and RyR are required for
regulation of presynaptic morphology points to functional interactions between these channels in the
regulation of ER Ca2+ release and synapse development.
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Figure 1. Schematic depicting the role of the ER Ca2+ channel, Inactive (Iav), in the formation of
Drosophila presynaptic boutons. Within the Drosophila neuromuscular junction, presynaptic boutons
morphology and number are regulated by stabilized microtubules. Phosphorylated Futsch cannot bind
to microtubules, leading to microtubule destabilization. The Ca2+-dependent phosphatase, calcineurin,
is activated by Ca2+ released by Iav and subsequently dephosphorylates Futsch, which leads to
microtubule stabilization.

ER Ca2+ and microtubules are also involved in axon guidance [23]. Ca2+ release via RyRs,
and the subsequent activation of store-operated channels mediate the effects of netrin-1 on growth
cone guidance [35–38]. IP3Rs also influence netrin-1-dependent turning by regulating the rate of
microtubule invasion into growth cones [37]. Irrespective of the mechanism of store depletion, the
luminal [Ca2+] sensor, stromal interacting molecule 1 (STIM1), couples store release with microtubule
polymerization via interactions with the microtubule plus-end binding protein, EB1 [36,39–42].
Furthermore, membranes necessary for neurite extension are derived from ER Ca2+-dependent
asymmetric secretion of vesicles towards the growing end of axons [36,39–42]. The movement and
fusion of these vesicles with the axonal membrane depend on myosin Va, and are facilitated by
activation of IP3Rs or RyRs [24,25]. Myosin Va is also necessary for maintaining the appropriate
distribution of ER in axonal periphery, without which proper axonal growth would be impeded [24,25].

STIM and ER [Ca2+] also regulate the growth and morphology of dendritic spines. Neuronal
activity-dependent modification of the spine structure during long-term potentiation involves ER
Ca2+ store depletion, STIM1-mediated induction of store-operated Ca2+ entry, and gene expression
driven by the transcription factor NFATc3 [43,44]. In hippocampal neurons, directional movement of
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microtubules into spines, an intermediary in the regulation of spine morphology by ER Ca2+ release,
depends on interactions between STIM2 and the microtubule plus-end binding protein EB3 [45]. As is
the case in axons, release of ER Ca2+ within synaptic spines is predicated on the presence of ER. Myosin
Va-dependent movement of ER along actin fibers drags the organelle into growing spines [46,47],
thus facilitating spine development via pathways involving ER Ca2+ release. Together, these findings
suggest that actomyosins and microtubules influence temporally distinguishable events that sculpt
neuronal morphology. Myosin Va appears to set the stage by ensuring the availability of ER in the
relevant compartments such that subsequent release of ER Ca2+ facilitates local remodeling in a
microtubule-dependent manner.

4. ER Ca2+ and the Regulation of Neurotransmission

Axons contain the domains responsible for the release of neurotransmitter-laden synaptic vesicles
(SVs). The fundamentals of SV release, which are reasonably well-understood, can be succinctly
summarized as a sequence of events starting with the arrival of action potentials to presynaptic
termini, opening of voltage-gated Ca2+ channels (VGCCs), Ca2+ influx, and Ca2+/SNARE-dependent
SV exocytosis (Figure 2A) [48,49]. According to this model, instructive signals that elevate presynaptic
[Ca2+] to a range necessary for SV release are plasma membrane delimited, i.e., channels responsible
for both action potential propagation and Ca2+ entry are located on the cell surface. Nevertheless,
many studies have demonstrated the involvement of ER Ca2+ channels in sculpting the temporal
dynamics and extent of SV release. The probability of SV release, defined as the likelihood that a
primed SV will be released upon arrival of the action potential, is influenced by presynaptic resting
[Ca2+] (Figure 2B) [23,49–52]. Given the 4th power relationship between [Ca2+] and quantal content
(referred to as the nonlinear relationship between Ca2+ and vesicle release rates [53]), small changes in
resting [Ca2+] exert considerable influence on neurotransmitter release (Figure 2B, inset) [23,49–51].
At the calyx of Held, for instance, even a 50 nM increase in resting [Ca2+] is sufficient to elicit an
appreciable increase in SV release probability [51]. Many different processes, including Ca2+ entry
and extrusion mechanisms, cooperate to determine presynaptic resting [Ca2+] [50]. Roles for ER
Ca2+ and ER-resident channels in crafting resting [Ca2+] and SV release probability have been widely
acknowledged (Figure 2A) [23,54–62]. At the hippocampal Schaffer-collateral pathway, deletion of
presenilin in presynaptic CA3 neurons perturbs short-term plasticity via hyperactivation of RyRs [54,59].
Elevations in RyR-mediated ER Ca2+ release promote both spontaneous SV release and the probability
of evoked events [55,63,64]. Furthermore, either the induction of passive leak of ER Ca2+ following
inhibition of the Ca2+ ATPase, SERCA, or activation of IP3R mediated ER Ca2+ release are sufficient for
presynaptic facilitation [54,65,66]. These data point to a role for ER Ca2+ release per se rather than
an obligatory role for any specific channel type. Needless to say, the influence of ER Ca2+ release
on overall network dynamics depends on the identity of the neurons experiencing the Ca2+ release
events, as exemplified by the findings that increased RyR activity or inhibition of SERCA elevates the
probability of GABA release in Purkinje neurons, which serves to dampen network activity in the
cerebellum [56,57].
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Figure 2. Influence of ER Ca2+ release on synaptic vesicle (SV) release and neurotransmission.
(A) Action potentials are propagated through axons. Depolarization of presynaptic membrane activates
voltage-gated Ca2+ channels (VGCCs), which causes Ca2+ to enter the synapse. ER Ca2+ release
contributes to cytosolic [Ca2+], which influences release of neurotransmitter-laden SVs. (B) ER Ca2+

release, whether increased or decreased, affects the presynaptic cytosolic [Ca2+]. The presynaptic
cytosolic [Ca2+] scales linearly upon activation of VGCCs. The magnitude of SV release obeys a 4th
power relationship with presynaptic cytosolic [Ca2+], allowing small elevations in [Ca2+] to cause large
increases in neurotransmitter release (inset).

Although several studies have shown that Ca2+-induced Ca2+ release (CICR, mediated by either
RyR or IP3R) is necessary for ER stores to adequately influence presynaptic plasticity and SV release, the
notion of CICR influencing SV release has incompletely understood nuances [54,55,61,62]. For instance,
other studies argue in favor of a model that residual Ca2+ from VGCC opening, and not CICR, is the
major regulator of resting [Ca2+] and presynaptic plasticity in cerebellar and hippocampal slices [67].
A potential explanation for these conflicting viewpoints could be gleaned from studies focused on
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the role of ER Ca2+ release in presynaptic termini of Drosophila NMJs. Loss-of-function mutations in
the gene encoding the TRPV channel, Iav, result in lower presynaptic resting [Ca2+] and decreased
SV release probability [23]. Interestingly, these phenotypes were only evident when the extracellular
[Ca2+] was lowered to <0.5 mM from the usual 2 mM [23]. These phenotypes, which have been
recapitulated in other mutants with diminished ER Ca2+ release at the Drosophila larval NMJ [20,68],
show that the contribution of ER channels on resting [Ca2+] can be overridden by Ca2+ influx. We
envision that only during periods of diminished presynaptic Ca2+ entry would the contribution of ER
Ca2+ stores to SV release become apparent. For example, during high frequency stimulation when
massive Ca2+ influx into postsynaptic neurons results in dramatic reduction of [Ca2+] in the synaptic
cleft [69–72], ER Ca2+ release could have a significantly larger impact on determining resting [Ca2+],
and thus SV exocytosis.

5. ER Ca2+ Release Regulates Neuronal Gene Expression during Development, Synaptic
Plasticity, and Cell Death

While axons and dendrites participate in intercellular communication, cell bodies contain the
nuclei, and thus serve as the seat of neuronal gene expression. Ca2+ is a key intermediate in the
functional relationship between neuronal activity and gene expression. Alterations in cytosolic and
nuclear [Ca2+] exert differential effects on neuronal gene expression, the dynamics of which are
synchronized with the spatiotemporal patterns of the Ca2+ transients. Depletion of ER Ca2+ stores by
application of the SERCA inhibitor, thapsigargin, in cortical, hippocampal, and other neurons leads to
the dramatic and rapid increase in the transcription of the immediate early genes encoding c-Fos and
Homer-1a [73,74]. Stimulation of ER Ca2+ release in hypothalamic neurons following application of
serotonin also results in c-Fos induction via a process requiring ER Ca2+ release through IP3Rs [75,76].
The relationship between c-Fos induction and ER Ca2+ release reinforces the role for the latter in
synaptic plasticity. Furthermore, CREB-dependent gene expression, which is also critically important
for synaptic plasticity, is influenced by different sources of neuronal Ca2+ elevation [77–79]. Indeed,
c-Fos expression is itself dependent on CREB, potentially via IP3R-dependent nuclear translocation of a
CREB coactivator called TORC1 (not to be confused with the kinase complex containing mTOR) [76,80].
IP3 production and ER Ca2+ release via IP3Rs during synaptic plasticity is often triggered by stimulation
of metabotropic glutamate receptors [81]. It is notable that in the context of synaptic plasticity, elevation
of nuclear [Ca2+] arising from the passive diffusion from the cytosol through the nuclear pore or due to
activation of IP3Rs embedded in the nuclear envelope promotes CREB-dependent transcription and
the changes in synaptic strength and dendritic arborization that characterize plasticity [82–89].

The canonical mode of CREB activation in response to cytosolic or nuclear Ca2+ elevation
involves CREB phosphorylation by Ca2+/calmodulin-responsive enzymes, CaMKII and CaMKIV
(Figure 3) [79,90,91]. The elevation of [Ca2+] that precedes CaMK- and CREB-dependent synaptic
plasticity is triggered by synaptic transmission occurring at dendritic spines, which begs the question:
how are signals transmitted from dendrites to the nucleus? One explanation for this long-range spatial
communication is that dendritic Ca2+ elevations result in CICR (RyR-dependent) and the propagation
of ER Ca2+ waves (likely IP3R-dependent), ultimately resulting the elevation of nuclear Ca2+ and
CREB-dependent gene expression (Figure 3) [83,92].

In T lymphocytes, NFAT-dependent gene expression is predicated upon the movement of the
transcription factor from the cytosol to nucleus [93–96]. As phosphorylation inhibits nucleocytoplasmic
transport of NFAT, calcineurin activated by ER Ca2+ release and store-operated Ca2+ entry is needed for
NFAT dephosphorylation and attendant gene expression [93–96]. Similarly, cytosolic Ca2+ elevations
in neurons lead to NFAT-dependent gene transcription in a calcineurin-dependent manner [97,98]. In
addition to Ca2+ entry accompanying neuronal activity, IP3R-mediated ER Ca2+ release downstream of
BDNF application or alterations in mitochondrial Ca2+ uptake drive nuclear translocation of NFAT in
neurons [97–99]. Whereas calcineurin/NFAT participate in neurodevelopment and synaptic plasticity
in some contexts [43,100,101], activation of this transcriptional axis by elevated Ca2+ release in mature
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neurons usually promotes cell death [102,103]. Furthermore, alterations in ER Ca2+ homeostasis is also
thought to be a determinant of gene expression changes observed in aged neurons, and could involve
calcineurin and NFAT [104]. Interestingly, expression of the genes encoding IP3R1 and IP3R2 are under
the control of calcineurin and NFAT [105–108], which prompts us to speculate that elevated channel
activity could indirectly promote its abundance, and thus compromise neuronal viability during aging
and disease.Cells 2019, 8, x FOR PEER REVIEW 7 of 30 
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Figure 3. Ca2+-mediated activation of neuronal gene expression. Dendritic stimulation activates
channels on the plasma membrane (PM), such as the N-methyl-D-aspartate receptor (NMDAR), which
allow Ca2+ influx. RyR responds to Ca2+ entry and the signal is amplified through Ca2+-induced
Ca2+ release (CICR). Subsequent activation of IP3R causes further Ca2+ release and activation of
calmodulin (CaM). CaM may be activated either directly in the nucleus or in the cytosol, in which
case it translocates to the nucleus, and activates Ca2+/calmodulin-dependent protein kinases (CaMKs).
CaMKs phosphorylate cAMP response element binding (CREB) protein, which binds to DNA and
drives changes in gene expression.

6. Relationship of ER Ca2+ Release with Neuronal Bioenergetics and Excitability

The healthy brain is a veritable powerhouse, a fact that is best illustrated by the involvement of this
organ in the production and consumption of ~20% of an individual’s energy despite contributing only
~2% to the total body mass [109]. Within the brain, most of the bioenergetic activity occurs in neurons,
which utilize ATP generated from mitochondrial oxidative phosphorylation (OXPHOS) for a variety
of key functions. The reducing equivalents that power OXPHOS are produced by the tricarboxylic
acid (TCA) cycle in the mitochondrial matrix [110]. While it is widely acknowledged that the TCA
cycle requires metabolites such as pyruvate and α-ketoglutarate [111–113], a less appreciated fact is
that >20 µM [Ca2+] is needed within the matrix for activation of the TCA dehydrogenases—pyruvate
dehydrogenase, α-ketoglutarate dehydrogenase, and isocitrate dehydrogenase (Figure 4) [113]. This
requirement necessitates an acute elevation of matrix [Ca2+] from the resting levels of ~500 nM, which
is made challenging by the relatively low Ca2+ affinity (20–30 µM) of the mitochondrial Ca2+ uniporter
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(MCU) [114]. Within the presynaptic compartment, routine machinations of neurotransmission
elevate cytosolic [Ca2+] to levels high enough for mitochondrial uptake and the attendant activation
of OXPHOS [114]. At these sites, locally produced ATP is immediately made available to plasma
membrane Ca2+ ATPases (PMCA), which use this source of energy to actively extrude intrasynaptic
Ca2+ (Figure 5) [115,116]. The situation is substantially more complex in cell bodies where the threat of
Ca2+ cytotoxicity precludes sustained [Ca2+] elevation in the bulk cytosol. To overcome these restrictive
conditions, a fraction of ER is physically associated with mitochondria allowing the two organelles to
form specialized structures called mitochondrial associated membranes (MAMs) [117,118]. Amongst
their myriad functions, MAMs are characterized by the presence of IP3Rs, and thus serve as conduits
for interorganellar Ca2+ transfer [117,119–124]. ER Ca2+ release by IP3Rs in MAMs enables sufficient
elevation of perimitochondrial [Ca2+] and MCU-mediated Ca2+ uptake [119]. IP3Rs are maintained
in MAMs by physical tethering to the outer mitochondrial membrane-resident protein, porin1, with
GRP75 serving as an intermediary link (Figure 4) [119]. These interactions allow IP3Rs to sculpt both
cytosolic and mitochondrial [Ca2+], with the latter playing a major role in the regulation of cellular
bioenergetics. It is important to note that despite the definitive involvement of MAMs in interorganellar
Ca2+ transfer, cytosolic [Ca2+] elevations that exceed the MCU threshold would increase mitochondrial
[Ca2+] in a manner that is agnostic to the source of Ca2+. For instance, cytosolic [Ca2+] elevations
subsequent to RyR activation also result in mitochondrial Ca2+ uptake, albeit in a MAM-independent
manner [125,126]. Concordantly, pharmacological inhibition of RyRs are beneficial in neurological
diseases associated with Ca2+-dependent mitochondrial dysfunction [127].
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Figure 4. ER Ca2+ release stimulates oxidative phosphorylation. Mitochondria-associated membranes
(MAMs) are points of contact between the ER and mitochondria that have various functions, including
Ca2+ signaling between the two organelles. MAMs are stabilized by protein pairs that bind to each
other, serving as molecular tethers. The VAPB-PTPIP51 and MFN1/2-MFN2 binding pairs are two
such examples. IP3R exists in MAMs and is linked via GPR75 to porin 1, which is found in the outer
mitochondrial membrane (OMM). In this arrangement, IP3-mediated Ca2+ release enables efficient
transfer of Ca2+ into the intermembrane space, where the low-affinity mitochondrial Ca2+ uniporter
(MCU) can be overcome by concentrated Ca2+ microdomains.
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Ca2+ that enters the mitochondrial matrix stimulates the tricarboxylic acid (TCA) cycle by
activating pyruvate-dehydrogenase (PDH), isocitrate-dehydrogenase (IDH), and alpha-ketoglutarate
dehydrogenase (KGDH). The TCA cycles produces the reducing equivalents (NADH and FADH2) that
power the electron transport chain (ETC), which produces a protein gradient in the intermembrane
space. Protons (H+) flow down their concentration gradient through ATP synthase leading to biogenesis
of ATP.
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Figure 5. Mechanisms of ER channel activation. Activation of IP3R begins at the plasma membrane
(PM), where agonist activation of G-protein coupled receptors (GPCRs) leads to dissociation of
heterotrimeric Gq protein. Gq activates PLC, which cleaves phosphatidylinositol 4,5-bisphosphate
(PIP2) into inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 serves as a second messenger and
activates IP3R, causing ER Ca2+ release. Alternatively, RyR is activated by cyclic ADP ribose (cADPR),
which is synthesized in the extracellular space from nicotinamide adenine dinucleotide (NAD+) by the
ectoenzyme, CD38. Both IP3R and RyR are themselves activated by Ca2+ and can stimulate each via
Ca2+-induced Ca2+ release (CICR). The resulting increase in cytosolic Ca2+ is removed by either plasma
membrane Ca2+ ATPase (PMCA) or sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), which pump
Ca2+ into the extracellular space or ER, respectively.

The extent of energy production in neurons is intimately related to neuronal excitability. Almost all
the processes involved in the regulation of neuronal membrane potential, excitability, and propagation
of action potentials exhibit steep dependences on [ATP]. Thus, the interplay between IP3R activation
and mitochondrial ATP production ensures a critical requirement for IP3Rs in the dynamic regulation of
neuronal membrane potential and excitability. This notion is exemplified by the Na+/K+ ATPase, which
is needed for the maintenance of the electrical polarity across the neuronal membrane, and for this
purpose the pump consumes ~75%–90% of the ATP produced in the cell [128]. Computational studies
modeling the relationships between OXPHOS and neuronal excitability point to the involvement of
the Na+/K+ ATPase in the susceptibility of neurons to ATP deprivation [129]. In this schema, even a
15% deficit in [ATP] is expected to result in fulminant loss of neuronal membrane potential due to
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the progressive decline in Na+/K+ ATPase activity [129]. Thus, it stands to reason that alterations in
ER Ca2+ release are reflected in the extent of ATP production and membrane potential. In addition,
dynamic changes in neuronal excitability are also subject to regulation by ER Ca2+ channels. For
example, in cortical neurons previously treated with caged IP3, action potentials were consistently
stronger [130]. Along these lines, the Ca2+ store-responsive protein, STIM1, has been shown to
play a role in ATP production and the resulting regulation of Ca2+ extrusion and the intrinsic firing
properties of Purkinje neurons [131]. On the other hand, Ca2+ release via either RyRs or IP3Rs can
activate Ca2+-responsive K+ channels (e.g., BK channels), which hyperpolarize neurons and repress
excitability [132]. Together, these findings implicate several interlocking functions of ER Ca2+ channels
in the regulation of neuronal excitability.

7. Mechanisms Involved in the Activation of ER Ca2+ Release in Neurons

7.1. Role for CICR and Ca2+ Pumps in ER Ca2+ Homeostasis

Since IP3R-dependent cytosolic Ca2+ elevation is usually sufficient for stimulating RyRs, IP3Rs
and RyRs are thought to cooperate in the initiation and propagation of CICR [133–136]. Both types of
channels exhibit biphasic dependence on cytosolic [Ca2+] owing to the presence of high Ca2+-affinity
activating sites and low Ca2+-affinity inhibitory sites on the proteins [137–140]. When cytosolic [Ca2+]
is below a critical threshold, Ca2+ ions activate the channels leading to store release. Upon exceeding
the threshold, Ca2+ ions start to inhibit the channels, which lead to attenuation of Ca2+ release and
restoration of cytosolic [Ca2+] to resting levels. In addition to IP3Rs and RyRs, other purported triggers
for CICR include Ca2+ influx via TRP channels and VGCCs, and alterations in mitochondrial Ca2+

uptake [141–144]. Given the inherently self-sustaining nature of CICR, functional crosstalk between
RyRs and other modulators of cellular Ca2+ homeostasis permits the amplification of even small or
transient elevations in cytosolic [Ca2+].

ER Ca2+ release is also coupled to the mechanisms of Ca2+ removal. Whereas extrusion of Ca2+ by
PMCA serves to lower cytosolic [Ca2+] and limit CICR, Ca2+ uptake into the ER promotes subsequent
release [60,144]. Given the 104-fold [Ca2+] gradient between the ER lumen and the cytosol, the overall
Ca2+ content of the ER serves as a powerful driving force for Ca2+ release [60]. Neuronal activity
results in SERCA-dependent sequestration of Ca2+ into the ER stores, which when released, promotes
store-operated Ca2+ entry and modulates SV release probability [60]. These findings demonstrate the
functional relationships between plasma membrane-resident channels, Ca2+ pumps, and ER channels
in the regulation of neuronal Ca2+ homeostasis.

7.2. Physiological Agonists of IP3Rs and RyRs

IP3R1 and RyR1/RyR3 are the respective channel isoforms that are most enriched in the nervous
system [145,146]. Despite exhibiting qualitatively similar relationships with Ca2+, the two families
of channels differ markedly in biophysical parameters such as ionic conductance, adaptation and
inactivation mechanisms, and kinetics [136]. IP3Rs are activated by the soluble second messenger,
IP3, which lowers the apparent Ca2+ responsiveness of the channels towards resting cytosolic
[Ca2+] [147,148]. Phospholipase C (PLC) enzymes, predominantly comprised of PLCβ, PLCγ, and
PLCδ subtypes, hydrolyze the phosphoinositide, PI(4,5)P2 (henceforth referred to as PIP2), to generate
diacylglycerol (DAG) and IP3 (Figure 5) [147,149,150]. Although all three subtypes of PLC hydrolyze
PIP2, they exhibit distinct activation and inactivation kinetics such that the shapes and dynamics of the
attendant ER Ca2+ release transients are a function of the subtype being stimulated. Whereas PLCβ

isoforms are activated by Gq-coupled receptors, PLCγ isoforms are coupled to receptor tyrosine kinase
signaling pathways, and PLCδ isoforms are regulated by phospholipids and Ca2+ [149–153]. The
enzyme subtypes also have distinct functions in the nervous system. For instance, PLCβ activation is
involved in regulation of neuronal tone and excitability, whereas PLCγ activation has a bigger influence
on neurodevelopment and synaptic plasticity [38,150,154–159]. It is important to note, however, that
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only a subset of PLC functions can be attributed to subsequent IP3R activation since PLC-mediated
PIP2 depletion can influence neuronal Ca2+ homeostasis via a number of different pathways [34]. IP3

kinases, IP3K1 and IP3K2, convert IP3 to the higher inositol phosphate, IP4, which is unable to bind
IP3Rs [160]. Thus, the combined activities of IP3K1 and IP3K2 serve to restrict channel activity.

RyR activity is modulated by ryanodine and Ca2+, and promoted by the second messenger, cyclic
ADP ribose (cADPR), synthesized from NAD+ by ADP-ribosyl cyclases such as CD38 and CD157
(Figure 5) [161–165]. Depending upon the context and cell type, RyR activation by cADPR could
also involve accessory proteins such as calmodulin [166–168]. Not surprisingly, many functions of
RyRs in neurons are subject to regulation by ADP-ribosyl cyclases and cADPR [148]. For instance,
cADPR-mediated release of ER Ca2+ affects the excitability of dorsal root ganglion (DRG) neurons
via Ca2+-activated currents [169,170]. Activation of RyRs by cADPR is also involved in the regulation
of neuronal firing frequency, SV release, and synaptic plasticity in both vertebrate and invertebrate
neurons [171–174].

7.3. Mechanisms Involved in the Activation of ER-Resident TRP Channels

TRPVs, TRPM1, TRPM8, and TRPP2 subtypes of the TRP superfamily of cation channels
have also been shown to localize and/or function in ER Ca2+ release [175–179]. TRPP2 channels
have been suggested to function as Ca2+-activated release channels, although this finding needs
further verification [177,178]. While TRPM8 activation in the ER has been suggested to require
phosphoinositides [176], the activation mechanisms for ER-resident TRPM1 remain unknown.
As mentioned previously, the Drosophila TRPV channel, Iav, is localized to axonal and presynaptic ER in
motor neurons [23,180]. Iav-mediated ER Ca2+ release is required for the maintenance of presynaptic
resting [Ca2+] and SV release probability [23]. The localization and function of a Drosophila TRPV
channel in the ER is reminiscent of a fraction of mammalian TRPV1 being localized to the ER, and in
close proximity to IP3Rs [181–189]. Concordantly, either the overexpression of TRPV1 or application
of the channel agonist, capsaicin, leads to ER Ca2+ release [23]. Involvement of TRPV1 in ER Ca2+

release also explains why ectopic expression of TRPV1, but not TRPV4, in Drosophila motor neurons
rescued the defects associated with ER Ca2+ release in hypomorphic alleles of the gene encoding
Iav [183–189]. The exact mechanisms involved in the stimulation of TRPV1 or Iav in the ER remain
unknown. Given the activation of TRPV1 by heat and endocannabinoids, it is possible that these
modalities also activate the channel in the ER. Iav activity is regulated by mechanical stretch [181,190],
although the involvement of stretch in Iav-mediated ER Ca2+ release has not been examined. We
speculate that the role of Iav and TRPV1 in the regulation of resting [Ca2+] could reflect a potential mode
of activation. Both Iav and TRPV1 contain Ca2+/calmodulin-binding motifs in their cytosolic domains.
In case of TRPV1, occupancy of these sites by Ca2+/calmodulin leads to channel desensitization [33].
Notably, deletion of the calmodulin-binding site on TRPV1 potentiates capsaicin-induced ER Ca2+

release, which points to a role for Ca2+/calmodulin in channel inactivation at the ER [191,192]. It is
possible that a similar mechanism suppresses Iav at resting or higher cytosolic [Ca2+]. If so, a drop in
cytosolic [Ca2+] would disinhibit Iav, leading to ER Ca2+ release. We predict that this axis serves as a
feedback mechanism for the maintenance of resting [Ca2+] within a narrow physiologically important
level at presynaptic termini.

8. Pathologies Associated with Neuronal ER Ca2+ Dyshomeostasis

Perturbed Ca2+ homeostasis occurs in many neurological diseases. Being the largest intracellular
reservoir of Ca2+, ER Ca2+ dyshomeostasis is of particular relevance to these diseases. In this section, we
present an overview of the relationships between ER Ca2+ and pathology in a sampling of neurological
diseases. We hope to highlight the tenet that qualitatively distinct alterations in ER Ca2+ signaling
(either too much or too little release or uptake) can result in pathology. In fact, ostensibly similar
changes in ER Ca2+ homeostasis can induce diverse spatiotemporal outcomes, indicating that changes
in ER Ca2+ dynamics accompany neuronal processes perturbed in disease.
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8.1. Autism Spectrum Disorder (ASD)

ASD is a constellation of neurodevelopmental disorders characterized by limited interpersonal
communication and social skills. Although the molecular etiology of ASD is highly complex, evidence
points to the involvement of ER Ca2+ alterations in its pathophysiology [193]. In cells derived from
patients suffering from fragile X syndrome and tuberous sclerosis, which are monogenic syndromes
that present with ASD, IP3-mediated Ca2+ signaling is compromised [194]. This paradigm has also
been extended to sporadic forms of ASD that are characterized by diminished ER Ca2+ release in
response to stimulation of PLCβ-coupled receptors [195]. The purported involvement of IP3Rs in
ASD likely stems from the role of these channels in the regulation of neuronal excitability and the
excitation–inhibition balance of neuronal circuits, both of which are necessary for the regulation of
social behaviors [193].

Mutations in Ryr1 accompany enhanced dendritic arborization and impaired social behavior in
mice [196]. Behavioral analyses of Ryr3-deficient mice also suggested abnormal social interactions [197].
The relationship between RyRs and social behavior is not restricted to mice since a gene duplication
has pointed to RYR2 as a target gene in a Lebanese cohort of ASD patients [198]. Additional insights
into ER Ca2+ dyshomeostasis in ASD may be gleaned from studies of fragile X, in which loss of fragile
X mental retardation protein (FMRP) results in the broadening of action potential waveforms, and
elevated neurotransmitter release [199]. The involvement of Ca2+-activated BK-type K+ channels in
this process raises the possibility that the demonstrated relationship between BK channels and ER Ca2+

release could contribute to autistic behaviors [132,199].

8.2. Lysosomal Storage Diseases (LSDs)

LSDs are inborn errors of metabolism that are often associated with severe neurodevelopmental
defects [200]. Although primarily associated with endolysosomal dysfunction, sustained changes in ER
Ca2+ dynamics have been reported in several LSDs [201–207]. The relationship between lysosomes and
ER in the context of Ca2+ homeostasis agrees with the findings that endolysosomal Ca2+ can be traced
to the ER. Ca2+ released by activated IP3Rs is loaded into lysosomes, which in turn, mediates various
aspects of endolysosomal function [208,209]. Although the mechanisms of endolysosomal Ca2+ uptake
remain incompletely understood, involvement of vesicular K+ channels or Ca2+/H+ exchangers have
been suggested [210–212]. Reminiscent of MAMs that from between ER and mitochondria, organellar
contact sites between the ER and endolysosomes form in a VPS13C-dependent manner, and permit
localized [Ca2+] elevations needed for interorganellar ion transfer [208,213,214].

The aforementioned relationships between ER and lysosomal Ca2+ also explain some of the
pathological features of LSDs. For instance, in primary neuronal cultures generated from murine
models of Gaucher’s disease and patient-derived tissues, accumulation of glucosylceramide potentiated
RyRs resulting in excessive Ca2+ release [201,202]. Concordantly, increased expression of SERCA2b or
inhibition of RyR, two strategies that increase ER luminal Ca2+, improved proteostasis and the stability
of glucocerebrosidase, the lysosomal enzyme mutated in Gaucher’s disease [203]. These findings
suggest that elevated ER Ca2+ release is a pathological event in Gaucher’s disease, likely triggering
the unfolded protein response due to sustained ER Ca2+ store depletion [204]. RyR antagonists were
also found to be beneficial in restoring lipid homeostasis in cells isolated from patients suffering from
Niemann-Pick type C [205]. Similarly, in murine models of GM1-gangliosidosis, the accumulation of
GM1-ganglioside within MAMs results in the activation of IP3R1 and attendant ER Ca2+ depletion [206],
whereas in Sandhoff’s disease (caused by deletion of HexB), GM2-gangliosides inhibit SERCA, leading
to the passive depletion of ER Ca2+ stores [207]. Together, these studies prompt the speculation that
suppression of ER Ca2+ release mechanisms could restore proteostasis, and thereby prove beneficial
in LSDs.
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8.3. Neuropsychiatric Diseases

In accordance with the involvement of ER Ca2+ dynamics in neuronal development, synaptic
plasticity, and excitability, Ca2+ dyshomeostasis has been described in neuropsychiatric diseases [215].
Darier’s disease, which is caused by mutations in the SERCA2 encoding ATP2A2 gene, demonstrates
a causal link between ER Ca2+ and neuropsychiatric disorders [215]. Amongst the spectrum of
pathophysiological features in Darier’s disease is the prevalence of schizophrenia, bipolar disorder, and
major depression [215–220]. Interestingly, Darier’s patients exhibit distinct neuropsychiatric outcomes
depending on the locations of the mutations in SERCA2 [215]. Consistent with the appearance
of psychiatric symptoms in Darier’s patients, it is notable that ER stress, an established outcome
of sustained Ca2+ store depletion, is associated with the neuroplastic changes observed in major
depression [221]. This notion informs the idea that attenuation of ER Ca2+ release would counteract,
and thus potentially reverse, neuropsychiatric outcomes. Indeed, knockdown of RyR genes in mouse
brains elicited antidepressant-like effects [222]. Moreover, the prototypical mood stabilizer, lithium, has
been suggested to exert some of its therapeutic effects by depleting free inositol, and the consequent
attenuation of phosphoinositide signaling and IP3 production [223–225]. Diminished phosphoinositide
signaling following lithium administration is thought to decrease IP3 production and thus, restrict
IP3R-mediated ER Ca2+ release.

8.4. Peripheral Neuropathies

Charcot Marie Tooth disease (CMT) constitutes a spectrum of peripheral neuropathies associated
with the degeneration of the long neuronal processes of motor and sensory neurons. Mutations in
many genes are associated with CMT, and at least a subset of these lead to disease-causing defects in
ER Ca2+ homeostasis and MAM function. A quintessential example illustrating the involvement of
MAMs in this disease is CMT2A, which is caused by mutations in the gene encoding a mitochondrial
protein, mitofusin-2 [226]. Further supporting a role for mitochondrial proteins in the pathophysiology
of CMT, mutations or loss of the gene encoding GDAP1 lead to CMT2K and CMT4A [227]. However,
in contrast to CMT2A, GDAP1 mutations have been shown to result in decreased store-operated Ca2+

entry [227–229]. Forms of CMT attributed to mutations in the gene for peripheral myelin protein 22
(PMP22) also result in diminished store-operated Ca2+ entry, but in Schwann cells [230]. These data
point to the complexities of ER-driven Ca2+ entry mechanisms in forms of CMT.

Although the exact role of mitofusin-2 in the regulation of Ca2+ homeostasis remains poorly
understood, deletion or CMT2A-associated mutations in mitofusin-2 have been reported to prevent
elevations in mitochondrial [Ca2+] in response to IP3R activation [226]. In contrast, another study
has reported increased interorganellar Ca2+ transfer upon the knockdown of mitofusin-2 [231]. The
conflicting findings regarding the role of mitofusin-2 likely reflect hitherto undescribed roles for
additional factors that modulate ER–mitochondrial Ca2+ transfer. In addition, mitofusin-2 could be
regulating attachment of a variety of different organelles, such as the overall effects of mitofusin-2
knockdown, which is highly context-dependent. Indeed, the association between the ER and the
plasma membrane necessary for STIM-dependent activation of store-operated Ca2+ entry has also been
proposed to involve mitofusin-2 [232].

8.5. Neurodegenerative Diseases Directly Attributed to ER Ca2+ Release Channels

Neurodegeneration refers to the progressive loss of neuronal function, often resulting from
premature neuronal demise. In general, neurodegenerative diseases represent neurological diseases
with the clearest and best-documented involvement of ER Ca2+ dyshomeostasis. This notion is
exemplified by the findings that mutations in the gene encoding IP3R1, ITPR1, result in forms of
spinocerebellar ataxia (SCA15 and SCA29) and Gillespie syndrome [233–242]. SCA15 is an adult-onset
disease that presents with autosomal dominant cerebellar ataxia and attendant gait impairment due
to heterozygous deletions spanning the ITPR1 locus [233–236]. Mice that are heterozygous for a
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spontaneously arising Itpr1 loss-of-function allele also exhibit severe cerebellar degeneration leading
to abnormal locomotion starting around postnatal day 14 [234]. The exceptionally high abundance
of IP3R1 in the cerebellar Purkinje neurons [234,243] could explain the haploinsufficiency observed
upon deletion of one of the two copies of the gene encoding the channel. Constitutive homozygous
deletion of Iptr1 in mice leads to significant embryonic lethality [243]. Of the few animals that are born,
all exhibit severe ataxia, tonic-clonic seizures, and die by the weaning period [243].

SCA29 is an infantile-onset form of the disease, and is associated with cerebellar atrophy, hypotonia
from infancy, non-progressive ataxia, and related psychomotor deficiencies [238]. Patients with SCA29
are generally heterozygous for missense mutations in ITPR1 that occur in exons encoding the IP3-biding
domain of the protein, and thus, diminish or abolish channel function [237,238]. While most cases of
SCA stem from decreased IP3R1 activity as the consequence of haploinsufficiency, one missense variant
(IP3R1R36C) results in elevated IP3-binding affinity and sustained channel activation [244]. Interestingly,
these patients also present with typical features of SCA, including gait abnormalities and delayed
motor development [244]. These data point to the importance of ITPR1 dosage and maintenance of
channel activity within a ‘Goldilocks’ zone for Purkinje neuron viability.

Gillespie syndrome, which is a rare congenital disorder characterized by hypotonia, ataxia due
to progressive cerebellar atrophy, and intellectual disability, is also caused by autosomal recessive or
dominant missense mutations in ITPR1 [240–242]. ITPR1 mutations in Gillespie syndrome are varied,
and often involve partial expression of the wild-type gene accompanied by truncated variants that
exert dominant-negative effects [240–242]. Although the cerebellar and motor outcomes in Gillespie
syndrome mimic those in SCA, an intriguing feature that distinguishes Gillespie syndrome is the
appearance of partial aniridia [240–242,245]. The mechanisms underlying the specificity of aniridia in
Gillespie syndrome remain unknown, and mice with ITPR1 mutations do not exhibit aniridia [242].

8.6. Age-Related Neurodegenerative Diseases

Age-related neurodegenerative diseases (Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS)) exhibit ER Ca2+ dyshomeostasis.
A “Ca2+ hypothesis” has been advanced to bridge the mechanistic gap between amyloid accumulation
and cognitive decline in AD [246]. This model is built on the understanding that AD neurons exhibit
elevated cytosolic Ca2+ levels. For instance, baseline cytosolic [Ca2+] in neurons from the 3xTg-AD
mouse model is double that in control cells [247]. Mutated variants of presenilin, which are a familial
cause of AD, potentiate the activity of IP3Rs via direct regulation of channel gating or other indirect
mechanisms (Figure 6) [65,248–250]. A number of other studies have also reported increases in the
abundance and activity of RyRs in AD mouse models, which has raised the possibility of treating
AD with the RyR antagonist, dantrolene [59,251,252]. Adding to this complexity, presenilins also
regulate the activity of SERCA, ER–mitochondrial transfer of Ca2+ and phospholipids, mitochondrial
ATP production, and overall cellular Ca2+ homeostasis (Figure 6) [253–255]. In contrast, amyloid β

oligomers have been shown to increase the transfer of Ca2+ from the ER to mitochondria, leading
to mitochondrial Ca2+ overload, sustained store depletion, and toxic activation of store-operated
Ca2+ entry [256]. As mentioned in a previous section, ER Ca2+ release and store-operated Ca2+ entry
(Figure 6) can lead to calcineurin-dependent nuclear translocation of NFAT, and potentiate cell death
in mature neurons [98,102,103]. Pointing to the involvement of this axis in AD, inhibition of the
calcineurin/NFAT pathway alleviates amyloid β-induced neurodegeneration in a murine model of
the disease [257]. An additional consequence of ER Ca2+ store depletion is ER stress and activation
of the unfolded protein response (UPR), which also contributes to AD pathology [258–260]. Despite
these studies pointing to a pathological role for excessive ER Ca2+ release in AD, further studies are
needed to reconcile the conflicting reports suggesting either absent or opposite changes in ER Ca2+

homeostasis in AD [261–264].
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(PS) increases ER Ca2+ release. Various models of AD display increased expression of RyR, which can
also produce elevated Ca2+ release from the ER. Additionally, mutated PS stimulates sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA), which can fuel further release through ER Ca2+ channels. Increased
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membranes (MAMs) are also altered by mutated PS.

One view of the pathological mechanisms underlying PD, a disease associated with the loss of
dopaminergic neurons of the substansia nigra, revolves around the concept of dysregulated MAMs and
perturbations in ER–mitochondria Ca2+ signaling [265]. In induced pluripotent stem cell (iPSC)-derived
dopaminergic neurons from familial PD patients with triplication of the α-synuclein gene, interactions
between the ER and mitochondrial counterparts of MAMs VAPB and PTPIP51, respectively, are
disrupted [266]. The resulting cessation of interorganellar Ca2+ transfer decouples IP3R activation from
mitochondrial Ca2+ elevation, and thus, limits mitochondrial ATP production. Deprivation of ATP
in the dopaminergic neurons of the substansia nigra may be especially consequential, as these cells
perform a particularly energy demanding pacemaker function that requires tight homeostatic control
over ionic gradients [265]. As is the case in AD, calcineurin and NFAT mediate α-synuclein-induced
loss of dopaminergic neurons [267,268]. Since ER Ca2+ release and store-operated entry activate
calcineurin/NFAT-dependent neurotoxicity, these findings are consistent with augmented ER Ca2+

release as being a causal insult in PD.
HD is a neurodegenerative disease caused by CAG repeat extensions in the gene encoding

Huntingtin, and is characterized by extensive loss of neurons in the striatum resulting in characteristic
chorea and progressive dementia [269]. IP3R1–GRP78 coupling and enhanced transfer of Ca2+ between
the ER and mitochondria have been suggested to underlie ER stress and degeneration in a mouse
model of HD [270]. In agreement with these reports, expression of mutant Huntingtin (i.e., with
polyglutamine repeat expansions), but not wild type Huntingtin, in murine medial spiny neurons
enhanced IP3-mediated Ca2+ release [271]. Genetic studies in Drosophila further support this interaction
given that knockdown of IP3R suppressed neurodegeneration in a fly HD model [272]. As expected
from elevated ER Ca2+ release, store-operated Ca2+ entry is enhanced in striatal neurons of a mouse
model of HD, which underlies the synaptic loss observed in those animals [273]. A unique feature of
HD in the context of ER Ca2+ is that mutant Huntingtin exists in a complex with IP3R1 via interaction
with the C-terminus of the channel [274]. Thus, expression of a C-terminal fragment of IP3R1 attenuates
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the interaction between mutant Huntingtin and IP3R1 leading to the mitigation of neuronal loss in a
mouse model of the disease [274].

Various lines of evidence also point to ER Ca2+ dyshomeostasis stemming from perturbations in
ER Ca2+ release and MAM assembly as being important pathological mechanisms in ALS, a lethal
neurodegenerative disease characterized by motor neuron degeneration [275]. A familial form of ALS
(ALS8) is caused by a mutations in the MAM resident protein, VAPB (for example, VAPBP56S), which
participates in ER-mitochondrial tethering [275–277]. Although ALS8 is a rare form of ALS, decreased
VAPB protein abundance has been observed in spinal cord motor neurons from patients with sporadic
ALS [278]. In other forms of familial ALS, such as those caused by mutated variants of FUS and
TDP-43, VAPB–PTPIP51 interactions are comprised with attendant decreases in mitochondrial [Ca2+]
and ATP production (Figure 7) [279,280]. In accordance with the relationship between TDP-43 and
ER Ca2+ homeostasis, a worm model of ALS exhibits ER Ca2+ dyshomeostasis that led to decline of
neuronal function [281]. ALS-causing mutations in the gene encoding Sigma receptor-1, and C9orf72
hexanucleotide expansions (a leading cause of both sporadic and familial forms of ALS in populations
with European ancestry) are also associated with ER Ca2+ dyshomeostasis due to combinations of
elevated IP3R activity and diminished uptake into stores [282,283].
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9. Closing Remarks

In this review, we have described the involvement of ER Ca2+ homeostasis in neuronal functions
ranging from development and plasticity to gene expression and cell survival. We also provided
examples of neurological and neurodegenerative diseases that arise when the processes regulating the
movement of Ca2+ in and out of the ER go awry. It is important to note that despite being one of the
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most extensively studied organelles, much still remains to be known about ER Ca2+ and its relationship
to neuronal function and disease. In particular, we anticipate a proliferation of studies focused on
the domains that the ER forms with other organelles such as the mitochondria, endolysosomes, and
the plasma membrane. These studies should go a long way to illustrate that in the ultimate analysis,
intracellular organelles function in an ecosystem that requires invaluable contributions from all the
players. By remaining open to these possibilities, we can hope for novel therapies for a variety of
debilitating neurological diseases that arise from miscommunication between neuronal organelles.
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