Oncogenes calling on a lysosomal Ca2+ channel

Daniella M Schwartz1 & Shmuel Muallem2

Oncogene-dependent cancers upregulate and use lysosomal biogenesis for nutrient supply. It is unclear which lysosomal proteins and functions are essential for cell proliferation and tumor growth. A study by Jung et al in this issue of EMBO Reports shows that increased levels of the lysosomal Ca2+ release channel TRPML1 and its activator PI(3,5)P\textsubscript{2} in HRASG12V-dependent tumors are essential for cell proliferation and tumor growth [1]. Notably, genetic and pharmacological inhibition of TRPML1 is equally effective in suppressing HRASG12V-dependent tumors.

EMBO Reports (2019) e47953
See also: J Jung et al

The lysosome senses and responds to cell nutrients and the energetic status of the cell to determine cellular homeostasis. Lysosome proteases, lipases, and nucleases digest damaged intracellular organelles and proteins and endocytosed extracellular matrix to their building blocks, and export them to the cytoplasm using catabolite transporters [2]. The lysosome is also the site of several signaling pathways that control lysosomal function [3]. When sufficient nutrients are available, various kinases phosphorylate the master lysosomal biogenesis transcription factors TFEB and MITF to retain them in the cytosol. Upon cell nutrient starvation and stress, TFEB and MITF are dephosphorylated and translocate to the nucleus to activate the CLEAR (Coordinated MiTF Expression and Regulation) gene network, which induces lysosomal biogenesis [3].

Lysosomes have a crucial role in many cancers. Cancer cells are under severe nutrient stress and upregulate lysosomal biogenesis to increase metabolites and energy supply. Cancer cells also route a subpopulation of lysosomes to the cell periphery where they release lysosomal proteases that digest the extracellular matrix for additional nutrient supply and to aid in cell metastasis [4]. However, little is known about how the many lysosomal functions are regulated in cancer cells. In this issue of EMBO Reports, Jung et al [1] reported the upregulation and essential role of the lysosomal Ca2+ release channel TRPML1 in oncogenic HRAS (HRASG12V)-expressing tumor cells, as well as the correlation of elevated TRPML1 with reduced survival in three types of squamous cell carcinoma.

Lysosomes are acidified by a coupled function of a vacuolar-type H+ pump and a CLC7 H+/2Cl- exchanger, and take up Ca2+ by an unidentified Ca2+/H+ exchange mechanism. Ca2+ release from the lysosomes is mediated by the TRP channel family TRPML1 and requires the NAADP-activated Ca2+ and Na+ permeable two-pore channel TPC2 [5] (Fig 1). The only known and essential physiological activator of TRPML1 and TPC channels is the phosphoinositide lipid PI(3,5)P\textsubscript{2} [2]. The prominent role of TRPML1 in lysosomal and cellular function is evident from the human lysosomal storage disease mucolipidosis type 4, caused by mutations in TRPML1. TRPML1 has critical and permissive roles in lysosomal exocytosis, tissue repair, lysosomal positioning, and autophagy [6].

To identify key lysosomal proteins that regulate cell proliferation in tumor cells, Jung et al [1] screened HRASG12V-dependent tumors, revealing increased levels of MiTF/TFEB in HRASG12V-associated tumors compared with matched normal tissues. Notably, prominent within the cassette of differentially expressed cancer genes was TRPML1. Tumor cells differentially expressed VAC14, which is required for synthesis of the TRPML1 activator PI(3,5)P\textsubscript{2}; tumors differentially downregulated MTM1, which codes for the phosphatase that reduces PI(3,5)P\textsubscript{2} levels. Consistent with these findings, TRPML1-mediated Ca2+ release from the lysosomes of HRASG12V-expressing cells was double that of control cells. To reveal the importance of increased lysosomal Ca2+ release for tumorigenesis, Jung et al showed that knockdown of TRPML1 in several HRASG12V-expressing cancer cell lines inhibited cell proliferation by inhibiting the activated MAP kinase pathway. Furthermore, knockdown of TRPML1 inhibited growth of HRASG12V-expressing cells in xenografts, and deletion of trpml1 in drosophila expressing the activated fly Ras homologue dRASG12V inhibited MAP kinase activation, cell proliferation, and tissue growth.

To examine potential mechanisms by which increased lysosomal Ca2+ release increases cell proliferation in HRASG12V-expressing cells, Jung et al [1] analyzed plasma membrane (PM) cholesterol and HRASG12V nanoclustering. To affect cell proliferation, all activated RAS oncogenic proteins are organized into nanoclusters in defined non-overlapping PM lipid domains [7]. Increased lysosomal Ca2+ release was essential for intracellular cholesterol trafficking, which was in turn required for HRASG12V nanoclustering. The sequence of events proposed by Jung et al is illustrated in Fig 1. In cells expressing HRASG12V, elevated MiTF and TFEB induce the
CLEAR gene network of endolysosomal genes, including TRPML1 and genes that upregulate the TRPML1 activator P(3,5)P2. This results in increased lysosomal Ca\(^{2+}\) release, nanoclustering of HRAS\(^{G12V}\) in cholesterol-rich PM domains, MAP kinase pathway activation, and ultimately cell proliferation and tumor growth. It is of interest that TRPML1-mediated lysosomal Ca\(^{2+}\) release induced proliferation in HRAS\(^{G12V}\)-expressing cells but not control cells. Moreover, partial deletion of TRPML1 was sufficient to inhibit cell proliferation and tumor growth, and pharmacological inhibition was as effective as TRPML1 knockdown in HRAS\(^{G12V}\)-expressing cells. This suggests that TRPML1 inhibition will be a feasible therapeutic strategy for HRAS\(^{G12V}\)-dependent tumors.

These findings raise several questions and may have implications for other forms of oncogene-driven cancers. One key question is how an increase in lysosomal Ca\(^{2+}\) release can support tumor growth. One potential mechanism is suggested by the role of lysosomes in KRAS\(^{G12V}\)-dependent tumors. As illustrated in Fig 1, lysosomal Ca\(^{2+}\) activates the Ca\(^{2+}\)-regulated phosphatase calcineurin and the Ca\(^{2+}\)/calmodulin-dependent kinase CaMKK2. Calcineurin dephosphorylates MiTF and TFEB [8], and CaMKK2 phosphorylates and inhibits AMP kinase (AMPK), which phosphorylates MiTF and TFEB [9]. This results in dephosphorylation of MiTF and TFEB and their translocation to the nucleus and increased lysosomal biogenesis.

Other open questions are how exactly TRPML1 affects PM cholesterol level, and how TPC channels may affect oncogene-driven cancers. PM cholesterol is determined by lipid transfer proteins such as oxysterol binding protein (OSBP)-related protein 2 (ORP2), which translocates endolysosomal cholesterol to the PM [10]. It should be of interest to determine expression of ORP2 and other OSBPs that transport cholesterol in oncogene-dependent tumors and their regulation by lysosomal Ca\(^{2+}\) release. Finally, the TPC channels that are required for lysosomal Ca\(^{2+}\) release are implicated in cancer development [5]. Considering the findings of Jung et al., it should be of interest to determine their status and activity in oncogene-dependent tumors.

Acknowledgements

The authors are supported by intramural grant from NIH/NIDCR DE000735-07 (SM) and National Psoriasis Foundation Robertson Fellowship, NIH NIAID TPCR Program (DMS).

References