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ABSTRACT

Activating mutations in the RAS family of proto-oncogenes represent some of the leading causes
of cancer. Unmitigated proliferation of cells harboring oncogenic RAS mutations is accompanied
by a massive increase in cellular bioenergetic demands, which offers unique opportunities for
therapeutic intervention. To withstand the steep requirements for metabolic intermediates, RAS-
driven cancer cells enhance endolysosome and autophagosome biogenesis. By degrading cellular
macromolecules into metabolites that can be used by biosynthetic pathways, endolysosomes
permit continued proliferation and survival in otherwise detrimental conditions. We recently
showed that human cancers with activating mutations in HRAS elevate the expression of
MCOLN1, which encodes an endolysosomal cation channel called TRPML1. Increased TRPML1
activity in HRAS-driven cancer cells is needed for the restoration of plasma membrane cholesterol
that gets collaterally internalized during endocytosis. Inhibition of TRPML1 or knockdown of
MCOLNT leads to mislocalization of cholesterol from the plasma membrane to endolysosomes,
loss of oncogenic HRAS from the cell surface, and attenuation of downstream signaling. Here, we
discuss the implications of our findings and suggest strategies to leverage pathways that impinge
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upon TRPML1 as novel anti-cancer treatments.

Introduction

KRAS, HRAS, and NRAS are small GTPases
encoded by an evolutionarily conserved family of
proto-oncogenes [1,2]. These fascinating proteins
operate at the nexus of growth factor receptors and
mitogen-activated protein kinase (MAPK) cas-
cades, and are responsible for the faithful trans-
mission of signals between the two [1-3]. Over
25% of human tumors harbor “oncogenic” (i.e.
activating) mutations in RAS genes [4-9], which
makes their protein products some of the most
important therapeutic targets in cancer [10-16].
In healthy cells, cell surface receptors are function-
ally coupled to RAS proteins, which incite phos-
phorylation cascades involving RAF-MEK-ERK
or phosphatidylinositol-3-kinase (PI3K) [1-3].
Phosphorylated ERK, the activated form of
a terminal MAPK, translocates to the nucleus
where it induces the expression of growth-related
genes [1-3,14]. Oncogenic mutations usually abol-
ish the intrinsic GTPase activity of RAS and lock

the proteins in GTP-bound constitutively active
state. As a result, ERK phosphorylation and atten-
dant cell proliferation are dramatically higher in
cells harboring these mutations [4-6,11].

Despite more than three decades of concerted
effort, effective anti-RAS therapies have remained
elusive. The paucity of success has even prompted
the notion that RAS proteins might be “undrug-
gable” [12,13,15]. Although this idea is now being
challenged by new classes of drugs [17],
a traditional approach to sidestep the need to
target RAS directly focused on inhibition of down-
stream kinases [11,13,16,18,19]. Unfortunately,
these strategies were ultimately ineffective due to
intractable feedback loops and the propensity for
acquired resistance [18,20]. A good example is the
pharmacological inhibition of BRAF, which
induces paradoxical activation of RAS-ERK sig-
naling and undesirable potentiation of cell prolif-
eration [18,20]. Another cogent strategy to tune-
down the proliferative effects of mutant RAS relies
on the identification of orthogonal cellular
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pathways that make hyperactive RAS-ERK signal-
ing possible. Genomic, proteomic, and other mod-
ern analytical techniques have led to the
identification of pathways that are potentiated in
cancers. In this arena, lysosomal proteins are
emerging as an attractive group that can be tar-
geted to mitigate tumorigenesis [21-30]. Owing to
their roles in cellular metabolism, intracellular
trafficking, and macromolecule recycling, lyso-
somes sustain hallmarks of cancer - abnormal
proliferation, drug resistance, metastasis, and
angiogenesis [28-34]. Based on this understand-
ing, it has been asserted that the disruption of
endolysosomal function can retard the growth of
certain malignancies.

Dysregulated lysosomal biogenesis in cancer
cells

Cancer cell proliferation, which requires sustained
biosynthesis of a variety of macromolecules,
imposes a massive requirement for nutrients. To
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cope with steep metabolic demands, cancer cells
generate copious numbers of autophagosomes and
endolysosomes, which break down cellular macro-
molecules to intermediates that are shunted toward
growth [21,23]. Leveraging a transcriptional path-
way necessary for autophagy and endolysosomal
biogenesis [35-38], cancer cells upregulate several
endolysosomal proteins and enzymes en masse
[21,23]. The bHLH transcription factors - tran-
scription factor EB (TFEB), transcription factor
binding to IGHM enhancer 3 (TFE3), and melano-
cyte inducing transcription factor (MiTF) - drive
the expression of many genes that encode endoly-
sosomal proteins [38-42]. Not surprisingly, the
activities of these transcription factors are coupled
to nutrient availability. For instance, under nutri-
ent-rich conditions, TFEB is phosphorylated by the
mechanistic target of rapamycin complex 1
(mTORCI1) and sequestered in the cytoplasm by
14-3-3 protein [39,42,43] (Figure 1). When nutrient
levels drop, mTORCI activity declines [44].
Consequently, TFEB is dephosphorylated and
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Figure 1. Role of TRPML1 in the regulation of ERK signaling in cells harboring HRA
assembly of HRAS monomers into nanodomains that can recruit RAF, and promote MEK and ERK phosphorylation (left). HRA

$¢72Y mutations. HRAS-ERK signaling involves the

12v
SG

nanoclusters formation and plasma membrane localization are predicated upon the availability of cholesterol. When plasma
membrane cholesterol is depleted or lowered (right), HRAS®'? monomers cannot recruit RAF, leading to diminished ERK
phosphorylation. Cancer cells harboring oncogenic HRAS showed an increased level of MiTF/TFE transcriptional factors and activation
of the CLEAR gene network that leads to the lysosomal biogenesis (left). The elevated level of TRPML1 results in increased lysosomal
Ca®* release, HRAS®'? nanoclusters in the plasma membrane, activation of MAPK pathway, and cell proliferation.
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translocates to the nucleus, where it activates the
CLEAR (coordinated lysosomal expression and
regulation) gene network leading to enhanced lyso-
somal biogenesis [35,39,40,42] (Figure 1). Along
with the emergence of the understanding that lyso-
somal biogenesis is a potential therapeutic avenue,
elevated TFEB, MiTF, and TFE3 activities have
been described in  various malignancies
[23,27,29,41,45,46]. In KRAS-driven pancreatic
ductal adenocarcinoma (PDAC), TFEB is
decoupled from mTORCI, and constitutively trans-
locates to nuclei where it compels endolysosomal
biogenesis [23,47]. In other instances, cancer-
related mutations affect the expression of these
transcription factors. For instance, genomic trans-
locations in renal cell carcinoma and soft tissue
sarcoma lead to TFEB and TFE3 overexpression,
whereas MiTF expression is increased in melanoma
and hepatocellular carcinomas [41,48-52].

When thinking about translating these insights
into feasible therapies, we are faced with numerous
challenges. In addition to mediating endolysoso-
mal biogenesis, TFEB, MiTF, and TFE3 are also
involved in biological processes that are (at least
ostensibly) unrelated to endolysosomal function.
For example, MiTF is required for the specifica-
tion of melanocytes [52,53]. Furthermore, some
cancer cells simultaneously upregulate two or
more of these proteins [29]. In this situation, inhi-
bition of one transcription factor might not be
sufficient for adequate attenuation of endolysoso-
mal biogenesis. To make matters worse, many
genes that encode non-lysosomal proteins also
possess the CLEAR motif and are likely regulated
by TFEB, TFE3, and MiTF. This makes the onset
of unintended consequences a distinct possibility
in cells treated with putative inhibitors of these
transcription factors. The CLEAR motif that is
bound by TFEB, TFE3, and MiTF is identical to
the canonical E-box that is the target of many
different bHLH transcription factors including
Myc and Max [36,54,55]. Thus, Myc/Max and
other bHLH transcription factors likely influence
the effects of TFEB, MiTF and TFE3 to drive
endolysosomal biogenesis in certain cancers.
Supporting this idea, a recent study showed that
Myc competes with TFEB and TFE3 for binding to
CLEAR elements and thus negatively influences
lysosomal biogenesis [56]. To overcome these

limitations, we reasoned that targeting endolyso-
somal proteins that play tumor-specific roles
might be a better strategy to attenuate tumor
growth. The question we are faced with now is -
which endolysosomal proteins should we go after?

Involvement of a lysosomal Ca** channel,
TRPML1, in the proliferation of cells
harboring oncogenic HRAS mutations

We sought to identify endolysosomal proteins that
could be targeted to mitigate the growth of cancer
cells. Using a genomic approach and oncogenic
HRAS-driven cancer cells as models, we identified
the endolysosomal Ca®* permeable channel,
TRPMLI, as a potential target in cells harboring
oncogenic HRAS [29]. Using datasets available at
the cancer genome atlas (TCGA), we found that the
gene encoding the endolysosomal cation channel,
TRPML1 (MCOLNI), was upregulated in onco-
genic HRAS-expressing tumors due to the com-
bined actions of MiTF and TFEB. Accompanying
the increase in MCOLNI expression, TRPMLI1-
mediated endolysosomal Ca** release was dramati-
cally higher in HRAS-driven cancer cells compared
to controls (Figure 1). Importantly, elevated expres-
sion of MCOLNI in patients with HRAS-positive
tumors correlated with poorer prognosis [29]. We
went on to show that genetical or pharmacologic
inhibition of TRPML1 reduced the proliferation of
many different oncogenic HRAS-expressing cancer
cell lines via attenuation of the MEK-ERK pathway
(Figure 1). TRPMLI1 activity depends on the vesi-
cular phosphoinositide, PI(3,5)P,, which is synthe-
sized by the PIK-FYVE (FYVE-containing
phosphoinositide kinase) lipid kinase complex con-
taining Fabl and Vacl4 [57,58]. Pharmacological
inhibition of PIK-FYVE or knockdown of VACI14
also selectively inhibited the proliferation of mutant
HRAS-driven cancer cells [29]. Interestingly,
MCOLN1 knockdown or TRPMLI inhibition did
not affect ERK phosphorylation and cell prolifera-
tion in cancer cells expressing wild-type HRAS, or
in cells in which oncogenic HRAS was stably
knocked down [29]. These data indicate that inhi-
bition of TRPMLI imparts selective vulnerability to
cells expressing oncogenic HRAS while leaving cells
with normal HRAS unaffected. Thus, TRPMLI1
appears generally dispensable for regulating the



gain of MAPK signaling, except in the context of
HRAS-driven cancer cells that are marked by the
profound upregulation of ERK phosphorylation. If
these phenotypes were to be reproduced in the
clinic, one could speculate selective attenuation of
cancer cell proliferation with diminished side
effects associated with perturbation of otherwise
healthy cells.

The utility of blocking TRPML1 was also
observed in vertebrate xenograft models and
Drosophila  lacking the TRPML1 homolog
[29,59]. These findings paint a picture of an evo-
lutionarily conserved pathway of endolysosomal
Ca®" release that is required for elevated RAS
activity. Attenuation of cell proliferation and
RAS signaling in TRPML-deficient Drosophila
expressing  Drosophila  Ras®’?V or human
HRAS®"?V also demonstrate a fundamental
requirement for the vesicular channels that
extends beyond the genetic “ecosystem” of cancer
cells [29]. This was important from a conceptual
standpoint since cancer cells carry hundreds of
mutations that synergistically drive proliferation
and survival [60].
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How does an endolysosomal cation channel regulate
HRAS-ERK signaling in cancer cells? Localization and
clustering of HRAS at the plasma membrane, which is
dependent on cholesterol levels, is required for the
engagement of downstream effectors (Figure 1)
[2,3,61-64]. Given the involvement of TRPMLI in
vesicle exocytosis (Figure 2), MCOLNI knockdown
or TRPMLI inhibition diminished the movement of
cholesterol from endolysosomal vesicles to the plasma
membrane [29,65-69]. Accompanying these defects
in cholesterol recycling, inhibition of TRPMLI also
prevented the de-esterification of endocytosed choles-
terol esters (Figure 2) [29]. Consequently, levels of
plasma membrane cholesterol fell to an extent that
was sufficient to disrupt HRAS®'*Y nanocluster for-
mation and plasma membrane abundance, and
thereby, attenuate ERK phosphorylation and cell pro-
liferation (Figure 1). Nanoclusters of wild-type HRAS
were also perturbed by TRPMLI inhibition, but the
abundance of this variant in the plasma membrane
was not altered. These data explain the heightened
sensitivity of HRAS®'?Y to TRPMLI inhibition.
Further supporting the involvement of cholesterol,
lowering cholesterol levels by application of statins
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Figure 2. TRPMLT1 is necessary for vesicular trafficking and fusion of endolysosomes with lysosomes or the plasma membrane (PM).
By mediating endolysosomal exocytosis, TRPML1 coordinates the restoration of PM lipids such as cholesterol that get collaterally
internalized during endocytosis. Delivery of endocytosed material to lysosomes is needed for de-esterification of cholesterol esters.
Defects in de-esterification and recycling lead to lowered PM cholesterol, which explains the attenuation of HRAS®'?Y-driven ERK

signaling.
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phenocopied TRPMLI inhibition, whereas supple-
mentation of cholesterol prevented the effects of
TRPMLI inhibition [29].

Conclusions and future perspectives

Our studies raise the intriguing possibility that tar-
geting TRPML1 function might be a viable therapeu-
tic option for HRAS-driven cancers. The notion of
inhibiting TRPMLI to attenuate tumor growth
agrees with findings of MCOLNI upregulation and
a requirement for TRPMLI in proliferation and
metastases of triple-negative breast cancer cells, and
the survival/proliferation of melanoma cells [28,30].
Taken together, these three studies highlight some of
the complexities of the relationship between
TRPMLI and cancer. Similar to our findings in
HRAS-driven cancer cells, Xu et al. demonstrate
that TRPML1 promotes the development of triple-
negative breast cancer via lysosomal exocytosis and
the attendant release of ATP [25]. TRPMLI1 also
positively regulates mTORCI activity, and this func-
tion of the channel further promotes the breast can-
cer cell proliferation [25]. In a departure from this
theme, TRPML1 negatively regulates both ERK
phosphorylation and mTORCI activity in mela-
noma [28]. Rather, the utility of blocking TRPML1
in melanoma stems from a role for the channel in
potentiation of micropinocytosis [28]. As suggested
by Kasitinon et al. [28], differences in the purported
mechanisms by which TRPML1 promotes tumori-
genesis likely reflects the presence of distinct driver
mutations in the different types of cancer. If so, the
qualitative similarities of the effects of TRPMLI
inhibition in all three cancers are even more remark-
able. The idea that endolysosomal Ca** release pro-
motes tumorigenesis likely extends to other modes
of cation release from these organelles [70,71]. For
instance, Ca>* permeable, nonselective endolysoso-
mal two-pore cation channels were found to play an
important role in cancer cell migration via
Bl-integrin  trafficking and recycling [72].
Additionally, the TRPMLI1 paralog, TRPML2, has
been shown to be involved in the onset of glioma,
and inhibitors of PI(3,5)P, biosynthesis are effective
in the attenuation of cell proliferation in hepatic and
hematological malignancies [73-75]. Together, these
findings promise an era of cancer therapeutics that
revolve around endolysosomal ionic homeostasis.

Despite our excitement, additional studies are
going to be needed before we head to the clinic. Loss-
of-function mutations in MCOLNI are responsible
for a severe childhood-onset lysosomal storage dis-
ease called mucolipidosis type IV (MLIV) [76-78].
Thus, the onset of potentially severe neurological
dysfunction could deter the administration of
TRPMLI inhibitors to humans. That being said,
neurological deficits are unlikely to be a major barrier
if the drug being administered is unable to inhibit the
channel in the nervous system. One could consider
using antisense oligonucleotides (ASOs) to diminish
MCOLNI expression in cancers. Given that ASOs are
inherently unable to cross the blood-brain barrier
[79], these drugs bear the potential to attenuate
endolysosomal Ca®* release in non-neuronal tumors
while leaving MCOLN]1 expression unchanged in the
CNS. These and other possibilities ensure our
ongoing enthusiasm regarding the development of
new anti-cancer strategies that leverage the function
of endolysosomal ion channels.
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